Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Vaccines (Basel) ; 11(2)2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2200984

ABSTRACT

Health technology assessments (HTAs) of vaccines typically focus on the direct health benefits to individuals and healthcare systems. COVID-19 highlighted the widespread societal impact of infectious diseases and the value of vaccines in averting adverse clinical consequences and in maintaining or resuming social and economic activities. Using COVID-19 as a case study, this research work aimed to set forth a conceptual framework capturing the broader value elements of vaccines and to identify appropriate methods to quantify value elements not routinely considered in HTAs. A two-step approach was adopted, combining a targeted literature review and three rounds of expert elicitation based on a modified Delphi method, leading to a conceptual framework of 30 value elements related to broader health effects, societal and economic impact, public finances, and uncertainty value. When applying the framework to COVID-19 vaccines in post-pandemic settings, 13 value elements were consensually rated highly important by the experts for consideration in HTAs. The experts reviewed over 10 methods that could be leveraged to quantify broader value elements and provided technical forward-looking recommendations. Limitations of the framework and the identified methods were discussed. This study supplements ongoing efforts aimed towards a broader recognition of the full societal value of vaccines.

2.
Healthcare (Basel) ; 10(11)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2115967

ABSTRACT

The COVID-19 pandemic had a considerable impact on the whole health sector, particularly on emergency services. Our aim was to examine the performance of the Hungarian National Ambulance Service during the first four waves of the pandemic. We defined the 2019 performance of the service as the baseline and compared it with the activity during the pandemic years of 2020 and 2021. The data contained deliveries related to acute myocardial infarction, hemorrhagic stroke, ischemic stroke, overall non-COVID-related ambulance deliveries, COVID screenings performed by the ambulance service, and COVID-related ambulance deliveries. The data were aggregated for each week of the investigated time period and stratified by gender and age. Compared with the pre-pandemic era, we found a significant increase in all three medical conditions and overall deliveries (p < 0.001 in all cases). As a result of the increased burden, it is important for emergency services to prepare for the next global epidemic and to improve organizational performance and rescue activities. The Hungarian example highlights that in a pandemic, it can be beneficial to organize the emergency care of a country or a larger region under a single provider with a single decision maker supported by business intelligence.

3.
ESC Heart Fail ; 9(5): 3602-3607, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1925910

ABSTRACT

The case of a 35-year-old female with heart failure is presented, where the symptoms overlap with the heterogeneous manifestations of coronavirus disease 2019 (COVID-19). Those similarities and a recent shift in priorities during the SARS-CoV-2 pandemic delayed the recognition of acute heart failure in this patient. During the differential diagnostic process, obliterative disease was discovered in the bilateral subclavian and right renal arteries, and the latter resulted in uncontrolled hypertension, which played a significant role in the development of heart failure. The aetiology of vascular alterations turned out to be Takayasu's arteritis. Diagnosing Takayasu's arteritis is typically not straightforward due to its nonspecific signs and symptoms. Therefore, it can be concluded from our case report that the rising incidence of COVID-19 and focus on ruling out infection can potentially defer alternative, but appropriate diagnostic tests, particularly for certain conditions like rare diseases. Early identification and intervention is especially important for treating acute heart failure, whereas delay increases the risk of severe complications and mortality.


Subject(s)
COVID-19 , Heart Failure , Hypertension , Takayasu Arteritis , Female , Humans , Adult , Takayasu Arteritis/complications , Takayasu Arteritis/diagnosis , COVID-19/complications , SARS-CoV-2 , Heart Failure/etiology , Heart Failure/complications , Hypertension/complications
4.
Mol Ther ; 30(5): 1850-1868, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1692785

ABSTRACT

Since the first successful application of messenger ribonucleic acid (mRNA) as a vaccine agent in a preclinical study nearly 30 years ago, numerous advances have been made in the field of mRNA therapeutic technologies. This research uncovered the unique favorable characteristics of mRNA vaccines, including their ability to give rise to non-toxic, potent immune responses and the potential to design and upscale them rapidly, making them excellent vaccine candidates during the coronavirus disease 2019 (COVID-19) pandemic. Indeed, the first two vaccines against COVID-19 to receive accelerated regulatory authorization were nucleoside-modified mRNA vaccines, which showed more than 90% protective efficacy against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alongside tolerable safety profiles in the pivotal phase III clinical trials. Real-world evidence following the deployment of global vaccination campaigns utilizing mRNA vaccines has bolstered clinical trial evidence and further illustrated that this technology can be used safely and effectively to combat COVID-19. This unprecedented success also emphasized the broader potential of this new drug class, not only for other infectious diseases, but also for other indications, such as cancer and inherited diseases. This review presents a brief history and the current status of development of four mRNA vaccine platforms, nucleoside-modified and unmodified mRNA, circular RNA, and self-amplifying RNA, as well as an overview of the recent progress and status of COVID-19 mRNA vaccines. We also discuss the current and anticipated challenges of these technologies, which may be important for future research endeavors and clinical applications.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Nucleosides , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
5.
Pharmaceutics ; 14(2)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667271

ABSTRACT

The presence of the cap structure on the 5'-end of in vitro-transcribed (IVT) mRNA determines its translation and stability, underpinning its use in therapeutics. Both enzymatic and co-transcriptional capping may lead to incomplete positioning of the cap on newly synthesized RNA molecules. IVT mRNAs are rapidly emerging as novel biologics, including recent vaccines against COVID-19 and vaccine candidates against other infectious diseases, as well as for cancer immunotherapies and protein replacement therapies. Quality control methods necessary for the preclinical and clinical stages of development of these therapeutics are under ongoing development. Here, we described a method to assess the presence of the cap structure of IVT mRNAs. We designed a set of ribozyme assays to specifically cleave IVT mRNAs at a unique position and release 5'-end capped or uncapped cleavage products up to 30 nt long. We purified these products using silica-based columns and visualized/quantified them using denaturing polyacrylamide gel electrophoresis (PAGE) or liquid chromatography and mass spectrometry (LC-MS). Using this technology, we determined the capping efficiencies of IVT mRNAs with different features, which include: Different cap structures, diverse 5' untranslated regions, different nucleoside modifications, and diverse lengths. Taken together, the ribozyme cleavage assays we developed are fast and reliable for the analysis of capping efficiency for research and development purposes, as well as a general quality control for mRNA-based therapeutics.

6.
Geroscience ; 43(5): 2289-2304, 2021 10.
Article in English | MEDLINE | ID: covidwho-1482277

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is essential for SARS-CoV-2 cellular entry. Here we studied the effects of common comorbidities in severe COVID-19 on ACE2 expression. ACE2 levels (by enzyme activity and ELISA measurements) were determined in human serum, heart and lung samples from patients with hypertension (n = 540), heart transplantation (289) and thoracic surgery (n = 49). Healthy individuals (n = 46) represented the controls. Serum ACE2 activity was increased in hypertensive subjects (132%) and substantially elevated in end-stage heart failure patients (689%) and showed a strong negative correlation with the left ventricular ejection fraction. Serum ACE2 activity was higher in male (147%), overweight (122%), obese (126%) and elderly (115%) hypertensive patients. Primary lung cancer resulted in higher circulating ACE2 activity, without affecting ACE2 levels in the surrounding lung tissue. Male sex resulted in elevated serum ACE2 activities in patients with heart transplantation or thoracic surgery (146% and 150%, respectively). Left ventricular (tissular) ACE2 activity was unaffected by sex and was lower in overweight (67%), obese (62%) and older (73%) patients with end-stage heart failure. There was no correlation between serum and tissular (left ventricular or lung) ACE2 activities. Neither serum nor tissue (left ventricle or lung) ACE2 levels were affected by RAS inhibitory medications. Abandoning of ACEi treatment (non-compliance) resulted in elevated blood pressure without effects on circulating ACE2 activities. ACE2 levels associate with the severity of cardiovascular diseases, suggestive for a role of ACE2 in the pathomechanisms of cardiovascular diseases and providing a potential explanation for the higher mortality of COVID-19 among cardiovascular patients. Abandoning RAS inhibitory medication worsens the cardiovascular status without affecting circulating or tissue ACE2 levels.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers , Female , Humans , Male , Renin-Angiotensin System , Stroke Volume , Ventricular Function, Left
7.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1302160

ABSTRACT

Objective: Inhibitors of the angiotensin converting enzyme (ACE) are the primarily chosen drugs to treat heart failure and hypertension. Moreover, an imbalance in tissue ACE/ACE2 activity is implicated in COVID-19. In the present study, we tested the relationships between circulating and tissue (lung and heart) ACE levels in men. Methods: Serum, lung (n = 91) and heart (n = 72) tissue samples were collected from Caucasian patients undergoing lung surgery or heart transplantation. ACE I/D genotype, ACE concentration and ACE activity were determined from serum and tissue samples. Clinical parameters were also recorded. Results: A protocol for ACE extraction was developed for tissue ACE measurements. Extraction of tissue-localized ACE was optimal in a 0.3% Triton-X-100 containing buffer, resulting in 260 ± 12% higher ACE activity over detergent-free conditions. SDS or higher Triton-X-100 concentrations inhibited the ACE activity. Serum ACE concentration correlated with ACE I/D genotype (II: 166 ± 143 ng/mL, n = 19, ID: 198 ± 113 ng/mL, n = 44 and DD: 258 ± 109 ng/mL, n = 28, p < 0.05) as expected. In contrast, ACE expression levels in the lung tissue were approximately the same irrespective of the ACE I/D genotype (II: 1423 ± 1276 ng/mg, ID: 1040 ± 712 ng/mg and DD: 930 ± 1273 ng/mg, p > 0.05) in the same patients (values are in median ± IQR). Moreover, no correlations were found between circulating and lung tissue ACE concentrations and activities (Spearman's p > 0.05). In contrast, a significant correlation was identified between ACE activities in serum and heart tissues (Spearman's Rho = 0.32, p < 0.01). Finally, ACE activities in lung and the serum were endogenously inhibited to similar degrees (i.e., to 69 ± 1% and 53 ± 2%, respectively). Conclusion: Our data suggest that circulating ACE activity correlates with left ventricular ACE, but not with lung ACE in human. More specifically, ACE activity is tightly coordinated by genotype-dependent expression, endogenous inhibition and secretion mechanisms.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Aged , Female , Humans , Lung/metabolism , Male , Middle Aged , Myocardium/metabolism , Peptidyl-Dipeptidase A/analysis , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Protein Processing, Post-Translational
8.
Nature ; 595(7868): 572-577, 2021 07.
Article in English | MEDLINE | ID: covidwho-1246378

ABSTRACT

BNT162b2, a nucleoside-modified mRNA formulated in lipid nanoparticles that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in its prefusion conformation, has demonstrated 95% efficacy in preventing COVID-191. Here we extend a previous phase-I/II trial report2 by presenting data on the immune response induced by BNT162b2 prime-boost vaccination from an additional phase-I/II trial in healthy adults (18-55 years old). BNT162b2 elicited strong antibody responses: at one week after the boost, SARS-CoV-2 serum geometric mean 50% neutralizing titres were up to 3.3-fold above those observed in samples from individuals who had recovered from COVID-19. Sera elicited by BNT162b2 neutralized 22 pseudoviruses bearing the S of different SARS-CoV-2 variants. Most participants had a strong response of IFNγ+ or IL-2+ CD8+ and CD4+ T helper type 1 cells, which was detectable throughout the full observation period of nine weeks following the boost. Using peptide-MHC multimer technology, we identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains. One week after the boost, epitope-specific CD8+ T cells of the early-differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later. In summary, BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes that are conserved in a broad range of variants, at well-tolerated doses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , BNT162 Vaccine , CD8-Positive T-Lymphocytes/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL